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The two-dimensional unsteady self-similar problem of unlimited unshocked conical compression of a gas is investigated. A solution 
is constructed in the form of a characteristic series in the domain bounded by a weak discontinuity and the sonic perturbation 
front. A reeursion system of ordinary differential equations is obtained for the coefficients. A boundary-value problem 
corresponding to the next approximation is investigated in detail, a fundamental system of solutions is found by analytical methods 
and its asymptotic behaviour is investigated. Essentially independent solutions are determined and different methods are used 
to seek a solution of the inhomogeneous equation with the required asymptotic behaviour. An algorithm is constructed to compute 
gas flows induced by the motion of a piston taking the first terms of the series into consideration. The results are compared with 
those of computations carried out using the method of characteristics. © 1999 Elsevier Science Ltd. All rights reserved. 

Processes of unlimited unshocked compression of an ideal polytropic gas, initially at rest inside a prism 
or a cone-shaped body, have been investigated using the exact two-dimensional and three-dimensional 
gas-dynamics equations; control laws for the motion of movable pistons producing unlimited compression 
have been constructed for mutually compatible isentropic exponent and initial geometric parameters 
of a compressible gas [1-3]. A solution has in fact been obtained for a simplified linear equation 
describing the flow in the vicinity of the axis of rotation after a weak discontinuity [4]. 

In this paper we continue the detailed study of the structure of the solution of the Goursat problem 
in a domain bounded by a weak discontinuity of conical form and a sonic perturbation front. A special 
change of variables enables us to construct the solution in the form of a characteristic series. 

The numerical solution of the Goursat problem using the method of characteristics [3] involves 
considerable difficulties (the fact that the integration domain is unbounded, the substantial rotation of 
the characteristics, etc.). It is therefore important to construct a reliable algorithm to compute the gas- 
dynamic parameters on the basis of the exact solutions. 

1. S T A T E M E N T  O F  T H E  P R O B L E M  

Suppose that at time t = 0 a uniform polytropic gas with equation of state p = a2p 7 (a 2 = const, p is 
the pressure, p is the density and y is the isentropic exponent and p = P0 = const, p --- P0 = const is at 
rest inside a body of revolution with generatrix ABO (the axis of revolution is the z axis, r is the radial 
coordinate, I OB I = 1 and OB _1_ AB)). We will assume that the initial velocity of sound is Co = 1. The 
curve ABO corresponds to the initial position St of a movable piston, which begins to advance into the 
gas at zero initial normal velocity. A weak straight discontinuity GH separates from the piston St, 
propagates at the velocity of sound and separates the domain of rest GHO from the domain of perturbed 
flow DGHFE. The curve DEF'H corresponds to the piston position at an arbitrary instant of time. The 
law of motion of St must be defined in such a way that, in a process of adiabatic compression with constant 
entropy, the entire gas at time t = 1 is focussed to the point O. The line GE corresponds to the weak 
discontinuity surface. 

In the perturbed domain, the flow is irrotational. The equation for the velocity potential ~(t, z, r) 
has the form 

2 2 _0(0~ + ~zz + r-I@r) = 0 

0 = c 2 = ( y  - 1 ) ( K  - O ,  - 0 2 / 2 - 0 2 / 2 )  
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Fig. 1. 

where c is the velocity of sound, K = const, ur = ~,, uz = Oz, uz and u, are the components of the velocity 
vector. 

The solution to the problem will be constructed in the class of unsteady self-similar conical flows 
with independent variables 

~=z/x, rl=r/'c, x f t - l ,  t~  [0,1] 

This class of solutions is described by the equation 

(Vg + ~)2V¢, + 2(LPg + P+)(~Pn + 'q)~P~ +(V~ + ¢l)2~Pnn - 

l X V -  - , i v .  - + v . .  + v . / , 1 )  = 0 
(1.1) 

where • = Kt - "¢W(~, 11). 
The flow in the domain DEG has been studied in detail and classes of exact solutions have been 

constructed [2]. For the case of unlimited cumulation, the function ~(~, rl) has the form 

V= 2 - ~ 2  1 ¥ -1  (2y-1)~:2, 2 2 .~"~ 
- ¥ + 1 - TI2 + 3 ~0~  + t o  = (1 .2)  y + 1 (3Y + 1) ~o , ~ ( y  - 1) 

In the solution constructed, the angle a is related to the constant ~ by 

tga=  2 - ?  

To construct the solution in the domain EGHF, one must solve a Goursat problem with the following 
data on the characteristics 

~ =  I_~  3112 if t t = ~ s i n a + r l c o s a - l = 0  
T - !  2 

I 
~ =  ? - - i  if v=~sina-rlcosa-l=O 

(1.3) 

It has not been possible to construct an exact solution of this problem using the method of charac- 
teristic series [5], because there is a non-analytic singularity in the neighbourhood of the point G. A 
solution of the Goursat problem has been obtained for a simplified linear equation describing the 
principal term of the asymptotic expansion of ~I' in the neighbourhood of G in the domain EGH [4] 

~__ I 3 . .  ( 3 1 t 2 + 2 b t v + 3 v 2 X l + l a r c s i n V + ~ t l  ¥-~ 8(~+0 kz rc v-~t) 4(v91)~ "~-~(v+'u) (1.4) 

It follows from the form of (1.4) that the function W is not analytic in the neighbourhood of 
zero. Thus, the nature of the singularity has been determined, and we are interested in further 
approximations of * .  

We change from the variables ~, 11 in Eq. (1.1) to the variables v, ~t and then, using our information 
on the nature of the singularity of • in the neighbourhood of G, we make the substitution 
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y = a r e s l n  y + I x  • • , x=4  (1.5) 
V-lt 

The resulting equation for ~F(x, y) is not presented here because of  its complexity. 
With this replacement of the variables, the characteristic tx = 0 transforms into the straight line 

y = g/2, and the characteristic v = 0 transforms into the point (0, -n/2) in the OXY plane. 
Conditions (1.3) may be written as 

W =  1 _. 9 v2 if IX=0, ~F= 1 if v = 0  (1.6) 
7 - 1  8 (7+1)  y - 1  

2. C O N S T R U C T I O N  O F  T H E  S O L U T I O N  AS A S E R I E S  

We will seek a solution of the Goursat problem as a characteristic series 

LF(x, y)= ~, ak(y)x k 
k=O 

It follows from (1.6) that the coefficients of series (2.1) must satisfy the following conditions 

a k = 0  for any k ~ 4 ,  a 4 = 8(7+1) 

lira ak(y)x k = 0 for any k 
x---~0 

(2.1) 

(2.2) 

Obviously, a0(y) = 1/ (T-  1). After substituting series (2.1) into the equation for the potential and 
equating the coefficients of like powers ofx to zero, we obtain a system of ordinary differential equations 
for ak(,V). For k = 1, 2, 3 and all further odd k, this gives homogeneous equations which, by (1.6), have 
only trivial solutions. For k = 2n, n = 2, 3 , . . . ,  the equation is 

/i k + /ui k ,_ ka~ = Fk(y ) (2.3) 
cosy  2(1+ sin y) 

The function Fk(y) on the right of Eq. (2.3) depends on as(y), s < k; Fg(y) = 0. 
Obviously, Eq. (2.3) has two singular points:y = -n/2 andy = n/2. Hence the construction of a solution 

with the desired asymptotic behaviour is a non-trivial problem. Substituting 

a2n = u[(1 - sin y)/(1 + sin y)]n J2 

into (2.3), we obtain an equation for u that does not contain a term with the first derivative 

ii n(n+l) = 0  (2.4) 
cos'-'--'~ y - u 

One solution of this equation may be determined by a formula in [6] 

u t = l i m e o s n y (  1 ~ ) n  a~O C~ y eaY 

The other independent solution may be found by substituting u 2 = UlZ in (2.4). 
For the case n = 2, the solution of Eq. (2.3) for k = 4 may be written as 

a4 _ (C; + C2y)(2 - cos 2y) + ~ C 2 sin 2y 

- " (I + Sin y)2 
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For the first of conditions (2.2) to be satisfied, the constants C 1 and C2 must satisfy the relation 

C I + C2~/2--- - ~¢j (~/+ I) -I 

Asymptotic analysis of  a4(Y ) as y --> -~/2 has shown that if 

-c2 /2 =o 

then a4(Y ) ----) 0 as y --> -re/2, and consequently, the second of conditions (2.2) is satisfied. Finally, 

3 (2 - cos 2y)(x / 2 + y) + ~ sin 2y 
a 4 ( y )  = - 

2 n ( y  + 1) (1 + sin y)2 

Expressing the partial sum of series (2.1) up to and including a4(y ) in terms of the variables v and ~t, 
we obtain solution (1.4) of  the linearized equation, and it is therefore of particular interest to work out 
the next non-trivial approximation to the solution of the problem. 

3. I N V E S T I G A T I O N  OF T H E  S O L U T I O N  OF T H E  E Q U A T I O N  
F O R  T H E  S E C O N D  T E R M  OF T H E  S E R I E S  

For n = 3, Eq. (2.3) has the form 

/i 6 + 6ti 6 3a 6 = _ 36 
cos-~ ( l+s iny)  g2(T+l)2(l+sinY)3 A(y) 

A(y) = (y2 sin y + 2 y c o s y  - n2 / 4sin y + cos 2 ys in  y) 
(3.1) 

Using the algorithm described above, we write down a fundamental system of solutions of the homo- 
geneous equation corresponding to (3.1). We have 

ul = s i n y ( 6 + 4 s i n 2 y )  _ YUl + 3 3 s i n 2 y + 1 2  
cos  3 y  ' u 2 - -  2 9cos 2y 

Since the function z(y) by which u 1 was multiplied has no singularities at y = -re/2, it follows that ul 
and u2 behave in the same way at the ends of the interval [-re/2, n/2] The general solution of the 
homogeneous equation has the form u = ClUl + C2u2, and the constants C1 and C2 may be chosen in 
such a way that the functions in the fundamental system of solutions are essentially independent. In 
particular, when C2 = 4C1/1L the function u has a singularity in the neighbourhood ofy  = -n/2, namely, 
u - 1/(y + ~/2) 3, while in the neighbourhood of the point y = re/2 we have u - (y + re/2) 4. If we take 
C2 equal to --4C1/x, then in the neighbourhood o fy  = n/2 we have 427m, while in the neighbourhood 
ofy  = ~/2 there is a singularity u - (y + ~/2) 4. We thus have a fundamental system of solutions of Eq. 
(2.4) for n = 3 and we finally obtain a fundamental system of solutions of the homogeneous equation 
corresponding to (3.1) in the form 

¢Pl --" ~-(y)(1 + sin y)-3, q~2 = ~+(y)(1 + sin y)-3 (3.2) 

~± (y) = sin y(3 + 2 sin2 y)(y + ~ 12) + cos y(11 sin2 y + 4) / 3 

Using the method of variation of constants, we write down the general solution of the inhomogeneous 
equation (3.1) 

9 J A(Y)~±(Y) dy 
a6 =CI(y)IPl +C2(y)IP2, Cl,2(y)= (¥+I)2~3 ' eos6y 

(3.3) 

Since ¢Pl, ~ and the integrands in (3.3) have a singularity at the ends of the interval [-n/2, n/2], it is 
important to ascertain whether Eq. (3.1) has a particular solution satisfying conditions (2.2) 

a6(g /2)  = O, lim a6(y)x ~ = 0 
x--tO 
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To that end, we made a detailed investigation of the asymptotic behaviour of (Pl, (P2 and of a6(Y ) itself 
in the neighbourhood of the singular points. It turned out that a solution of Eq. (3.1) exists with the 
following asymptotic expansions 

( 2gg 1 4 140 
a6(Y) 35g 2 + l )  2 - -  ~,- 3 y+nl------2 

, 4 , . ,  
37 tY+lJJ + 

as y --~ -nr2 

+Tt'- J J+°tt'-TJ J 
as y .--+ lt72 

Considering only the principal term of the asymptotic expansion ofa6(y), we investigate the behaviour 
of the function 

Rx, y) = , ~ ( > ' ) ~  = x~/ty + ~2) 

as x ~ 0, y -~ -~/2. It is obvious that if 

y + ~ / ' 2 ~ x  a, a ~  6 

near that point, then f(x, y) does not tend to zero. If we consider f(x, y) in the neighbourhood of the 
pointx = 0,y = -~/2 along a curve in the hatched domain of thexy plane (Fig. 2, right), condition (2.2) 
will be satisfied. Figure 2, left, shows the same domain in the ~t, v plane. 

Using the algorithm described here, the process of computing ak(y ) may be continued, obtaining new, 
more accurate approximations for ~P(x, y). 

4. RESULTS OF N U M E R I C A L  COMPUTATIONS 

In order to construct the law of motion of the piston r = r(t), z = z(t), we have to solve a system of 
ordinary differential equations 

drldt=Or(r,  z, t), d~ldt=Oz(r, z, t) (4.1) 

subject to the following conditions 

r = l / c o s a + z t g a  at t=0  

By (1.2), the velocity field in the domain DEG is linear with respect to ~, 11 and the law of motion 
of the piston in DEG is described by the following system of equations 

/e # 

, 0,~,  # a 0 
-lO00 0.5 / U - J  - 2  -# Z 0 

Fig. 2. Fig. 3. 
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Table 1 

Up to a 4 

--~' I Y ~ Z  

Up to a 6 Numerical method 

- -Z  I r 

0.05 

0.1 

2.99903 O.IXIO00 
2.50289 0.17535 
! .56256 0.50797 
0.77111 0.78783 
0.33327 0.94265 

2.99601 0.00000 
2.50226 0.17375 
!.56219 0..50697 
0.77082 038702 
0.33300 0.94190 

2.99903 0.00000 2.99903 0.00000 
2.50289 O. 17535 2.50288 O. 17534 
1.56254 0.50792 1.56254 O..qY#90 
0.77 109 0.78776 0.77106 0.78767 
0.33324 0.94256 0.333 i 8 0.94235 

2.99601 0.00000 2.996~ 0.00000 
2.50230 0.17383 2.50225 0.17371 
1.56215 0.50685 1.56211 0.50670 
0.77073 038675 0.77082 038639 
0.33289 0.94156 0.33269 0.94083 

dr= r dz 2(2-y) Z 2 ~  (4.2) 
dt t-l' all'= y+l t-l- y+l 

Taking into account the first approximation (1.4) to the function W, we can write down a system of 
equations describing the law of motion of the piston in the domain EGHF' 

dr ( MN'~ az 6 

I (I I li(;L1)4r2co82a_N2 (4.3) L = .t._ i. t~- +.~aresin L a ) ,  M= 

N = I -  l - z l i n a  

At the initial time, the segment AB is partitioned by mesh points converging to the point A. In the 
domain DEG one can integrate the equations of system (4.2) and write down an exact law of motion 
of the piston. In the domain EGHF', system (4.3) cannot be integrated exactly and we therefore use a 
third-order Ru'nge-Kutta method to obtain a solution. 

The velocity of sound c(t), the pressurep(t) and the energyE(t) necessary for unlimited compression 
are computed at the piston. 

Figure 3 shows the form of the moving piston at various instants of time (ABO is the initial position 
of the piston). 

A comparison with the results of computations carried out at the Institute of Mathematics and 
Mechanics, Ural Department of the Russian Academy of Sciences, by T. N. Bronina, using the method 
of characteristics, showed that, for large values of t, the laws of motion of the piston are identical to 
two or three significant figures. The following table lists the coordinates of the points of the piston at 
t = 0.05 and t = 0., obtained using partial sums of a characteristic series containing four terms and six 
terms. The coordinates of the points of the piston obtained by the method of characteristics are also 
listed. 

As t increases, the quality of the computations deteriorates. The convergence of the computed 
expansions was not investigated. Perhaps these series converge only locally, so that one cannot expect 
good results for t close to unity. 

This research was supported financially by the Russian Foundation for Basic Research (95-01-00721a, 
96-15-96246). 
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